Image Editing with Optimization (part I)

Jun-Yan Zhu

16-726, Spring 2022
Style Transfer vs. Image-to-Image Translation

• Data (how to define Style)
 – A single image? A collection of images?

• Applications
 – Photo -> Painting (Neural Style Transfer, Image-to-Image Translation)
 – Photo -> Photo (Image-to-Image Translation, Photo Style Transfer (Color))
 – Painting -> Photo (Image-to-Image Translation, Deep Image Analogy)

• Algorithms:
 – Patch-based method (i.e., correspondence between output and input)
 – Optimization-based method
 – Feed-forward network

• Loss functions
 – Style Loss: GAN loss, Gram matrix loss
 – Content Loss: Perceptual Loss (L2 reconstruction loss), identity loss, conditional GAN Loss, Cycle-consistency loss, Contrastive Loss (InfoNCE)
Image Editing with Optimization

\[\arg \min_{\hat{y}} \mathcal{L}_{\text{style}}(\hat{y}, y) + \lambda \mathcal{L}_{\text{content}}(\hat{y}, x) \]

\[|\text{Gram}(\hat{y}) - \text{Gram}(y)| + |\text{F}(\hat{y}) - \text{F}(x)| \]

User input

Input image

User input
Image Editing with Optimization

\[
\arg\min_{\hat{y}} \mathcal{L}_{\text{background_boundary}}(\hat{y}, y) + \lambda \mathcal{L}_{\text{source_gradient}}(\hat{y}, x)
\]

[Tao et al. 2014]
Image Editing with Optimization

Desired output:
- stay close to the input.
- satisfy user’s constraint.

[Tao et al. 2014]
Image Editing with Optimization

Image Smoothing via L0 Gradient Minimization [Xu et al., SIGGRAPH Asia 2011]

$$\arg \min_{\hat{y}} \left\{ \left\| \hat{y} - x \right\| + \lambda C(\hat{y}) \right\}$$

L0 norm on image gradients (the total number of nonzero elements)
Image Editing with Optimization

Colorization using Optimization [Levin et al., SIGGRAPH 2004]

YUV color space (Y is fixed)
constant: scribbles
variables: rest of the pixels

\[\sum_r \left(U(r) - \sum_{s \in N(r)} w_{rs} U(s) \right)^2 \]

visual similarity between r and s
Intensity, location, edge, motion, etc.

the color of pixel r
the color of pixel s (s is r’s neighbor)
Image Editing with Optimization

Desired output:
- stay close to the input.
- satisfy user’s constraint.

Moving least squares + transformation parameters.

input photo

User Input

result

[Schaefer et al. 2006]
So far so good

Image Warping

Image Composition
Things can get really bad

The lack of “safety wheels”
Adding the “safety wheels”

A desired output:
- stay close to the input.
- satisfy user’s constraint.
- Lie on the natural image manifold

Input Photo → Image Editing Program → Output Result

User Input

Natural Image Manifold
Learning Natural Image Manifold

- Deep generative models: \(G(z) : z \rightarrow x \)
 - Generative Adversarial Network (**GAN**) (e.g., DCGAN, StyleGAN2, BigGAN)
 - Variational Auto-Encoder (**VAE**) (e.g., VQ-VAE2)
 - Flow-based models (e.g., RealNVP, Glow)...
 - Diffusion models (e.g., DDPM, DDIM)
 ...

GAN as Manifold Approximation

Sample training images from “Amazon Shirts”

Random image samples from Generator $G(z)$

DCGAN [Radford et al. 2015]
Traverse on the GAN Manifold

\[G(z_0) \quad \text{Linear Interpolation in z space: } G(z_0 + t \cdot (z_1 - z_0)) \quad G(z_1) \]

Limitations of DCGAN:
• not photo-realistic enough, low resolution
• produce images randomly, no user control

DCGAN [Radford et al. 2015]
Changing Variables

• Traditional method: Optimizing the image
 \[\hat{y}^* = \arg \min_{\hat{y}} \mathcal{L}(x, \hat{y}, \hat{y}) \]

• New method: Optimizing the latent code
 \[z^* = \arg \min_z \mathcal{L}(x, y, G(z)) \]
Projecting and Editing an Image

- Original photo
- Projection on manifold
- Different degree of image manipulation
- Transition between the original and edited projection
- Editing UI
- Edit Transfer
Projecting and Editing an Image

- Original photo
- Projection on manifold
- Editing UI
- Different degree of image manipulation
- Transition between the original and edited projection
- Edit Transfer
Projecting an Image into GAN Manifold

Input: real image x
Output: latent vector z

Optimization
$z^* = \arg \min_z \mathcal{L}(G(z), x)$

Reconstruction loss
Generative model
Projecting an Image into GAN Manifold

Input: real image x
Output: latent vector z

Optimization
$z^* = \arg \min_z \mathcal{L}(G(z), x)$

Inverting Network
$z = E(x)$
$E = \arg \min_E \mathbb{E}_x \mathcal{L}(G(E(x)), x)$

Auto-encoder with a fixed decoder
Projecting an Image into GAN Manifold

Input: real image x
Output: latent vector z

Optimization
$$z^* = \arg \min_z \mathcal{L}(G(z), x)$$

Inverting Network
$$z = E(x)$$
$$E = \arg \min_E \mathbb{E}_x \mathcal{L}(G(E(x)), x)$$

Hybrid Method
Use the network as initialization for the optimization problem
Manipulating the Latent Code

original photo

projection on manifold

project

Editing UI

transition between the original and edited projection

different degree of image manipulation

Edit Transfer
Manipulating the Latent Code

Objective: \(z^* = \arg \min_{z \in \mathbb{Z}} \left\{ \sum_{g} (L_g(G(z)) v_g) + \lambda_s \cdot \| z - z_0 \|_2^2 \right\} \).

Guidance

\(v_g \)

\(G(z) \)

\(z_0 \)
Post-Processing

original photo → projection on manifold → editing UI → transition between the original and edited projection → different degree of image manipulation

Project → Edit Transfer
Edit Transfer

Motion \((u, v)\) + Color \((A_{3 \times 4})\): estimate per-pixel geometric and color variation

\[
\int \int \left[\| I(x, y, t) - A \cdot I(x+u, y+v, t+1) \|^2 + \sigma_s (\| \nabla u \|^2 + \| \nabla v \|^2) + \sigma_c \| \nabla A \| ^2 \right] dxdy
\]

- **data term**
- **spatial reg**
- **color reg**

Linear Interpolation in \(z\) space
Edit Transfer

Motion \((u, v)\) + Color \((A_{3\times4})\): estimate per-pixel geometric and color variation

\[
\int \int \left(\| I(x, y, t) - A \cdot I(x+u, y+v, t+1) \|^2 + \sigma_s (\| \nabla u \|^2 + \| \nabla v \|^2) + \sigma_c \| \nabla A \|^2 \right) dx dy
\]

data term

spatial reg

color reg

\(G(z_0)\)

Input

Linear Interpolation in \(z\) space

\(G(z_1)\)
Edit Transfer

Motion \((u, v)\) + **Color** \((A_{3 \times 4})\): estimate per-pixel geometric and color variation

\[
\int \int \underbrace{\| I(x, y, t) - A \cdot I(x+u, y+v, t+1) \|^2}_{\text{data term}} + \sigma_s (\| \nabla u \|^2 + \| \nabla v \|^2) + \sigma_c \| \nabla A \|^2 \, dx \, dy
\]

- **Linear Interpolation in** \(z\) **space**
- **Result**
Image Manipulation Demo
Image Manipulation Demo
Interactive Image Generation
iGAN [Zhu et al. 2016]. Also see Neural Photo Editor [Brock et al. 2017]
Changing Variables

• Traditional method: Optimizing the image

\[\hat{y}^* = \arg \min_{\hat{y}} \mathcal{L}(x, \hat{y}, \hat{y}) \]

• New method: Optimizing the latent code

\[z^* = \arg \min_z \mathcal{L}(x, y, G(z)) \]
Projecting and Editing an Image

- original photo
- projection on manifold
- Project
- Editing UI
- transition between the original and edited projection
- different degree of image manipulation
- Post-processing
Image Editing with GANs

• Step 1: Image Projection/Reconstruction
 \[z_0 = \arg \min_z \mathcal{L}(G(z), x) \]

• Step 2: Manipulating the latent code
 \[z_1 = z_0 + \Delta z \]

• Step 3: Generate the edited result
 \[G(z_1) \]
Image Projection with GANs
Image Reconstruction (high-res images, Big Models)

Original image x
Image Reconstruction (high-res images, Big Models)

\[z^* = \text{arg min}_z \mathcal{L}(G(z; \theta), x) \]

iGAN [Zhu et al. 2016]
Image Reconstruction (high-res images, Big Models)

\[z^* = \arg \min_z \mathcal{L}(G(z; \theta), x) \]

\[\text{Reconstructed image } G(z^*; \theta) \]

Random vector \(z^* \)

iGAN [Zhu, Krähenbühl, Shechtman, Efros]
Find the Differences...

Original image

GAN reconstructed image
Find the Differences...

Original image

GAN reconstructed image

- No microwave
- No window
- No lamp
- No stove
- No chairs/table
- No something there
- No plug
Reconstructing a Real Photo

Original image

Random vector z^*

Reconstructed image $G(z^*; \theta)$

$$z^* = \arg\min_z \mathcal{L}(G(z; \theta), x)$$

iGAN [Zhu et al. 2016]
Reconstructing a Real Photo

Original image

Random vector z^*

Weight space regularizer $||\theta - \theta_0||$

Feature space regularizer

Reconstructed image $G(z^*; \theta)$

$z^*, \theta^* = \arg \min_{z, \theta} \mathcal{L}(G(z; \theta), x)$
Reconstructing a Real Photo

Original image

Random vector z^*

Reconstructed image $G(z^*; \theta^*)$

$$z^*, \theta^* = \underset{z, \theta}{\text{arg min}} \mathcal{L}(G(z; \theta), x) + R(\theta)$$

Regularizer
Reconstructing a Real Photo

Original image
With z^*
With z^* and θ^*

Inspired by Deep Image Prior [Ulyanov et al.] and Deep Internal learning [Shocher et al.]
Using Different Layers

Optimizing the latent code

\[z^* = \arg \min_z \mathcal{L}(G(z), x) \]

Optimizing the style code

\[w^* = \arg \min_w \mathcal{L}(g(w), x) \]

Optimizing the extended style code

\[w_+^* = \arg \min_{w_+} \mathcal{L}(g(w_+), x) \]

Image2StyleGAN [Abdal et al., 2019], StyleGAN2 [Karras et al., 2019]
Using Different Layers: \(w \) space

StyleGAN — generated images

StyleGAN2 — generated images

StyleGAN2 [Karras et al., 2019]
Using Different Layers: w space

StyleGAN2 — real images

StyleGAN2 [Karras et al., 2019]
Using Different Layers: \(w^+ \) space

All the results are reconstructed using Face Model

Image2StyleGAN [Abdal et al., 2019]
Reconstruction \neq Editing

Interpolations between two images

Image2StyleGAN [Abdal et al., 2019]
Reconstruction ≠ Editing

Interpolations between two images

Image2StyleGAN [Abdal et al., 2019]