3D -aware Synthesns

Jun-Yan Zhu
16-726, Spring 2022

Many slides from Alyosha Efros, Rick Szeliski, Michael Cohen
Paul Srinivasan, Ben Midlenhall, Jon Barron, Ren Ng © NeRF [Mildenhall*, Srinivasan* et al., 2020]



Logistics

Virtual Game night: Friday 9 pm (April 15), zoom

HW3 voting: by the end of 12th April (Tue)

HWS comments:
 We have provided several user scribbles
 From_mean does not work for vanilla GANs



What do we see?

3D world
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Figures © Stephen E. Palmer, 2002



What do we see?
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The P\enoptlc Function
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Figure by Leonard McMillan
*Q: What is the set of all things that we can ever see?

*A: The Plenoptic Function (Adelson & Bergen)

*|et’s start with a stationary person and try to parameterize everything
that she or he can see...

from Alyosha Efros



Graysc:a\e snapshot
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*is intensity of light P (9’ ¢)

* Seen from a single view point
* Atasingle time
* Averaged over the wavelengths of the visible spectrum

*(can also do P(x,y), but spherical coordinate are nicer) from Alyosha Efros



Color snapshot
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P(6,9,4)
*is intensity of light
* Seen from a single view point

* Atasingle time

* As a function of wavelength

from Alyosha Efros



...““ - :
Wy, L

" Sl &
R

- o Iilla--. --v
et L

: ..' ."3 3 /Il/llm-- -\u o
ZPTTHET TS S

W rp aEIET S 1R

- Ty l..llﬂu
amEl

"lII'
- - .- ."l

1h\ S A1) EWMNr lll.m
| m\\‘\\\‘-l ] | " ’/Il/lr

: .\n S

P(6,0,4,1)

*is intensity of light
* Seen from a single view point

* (Qvertime

* As a function of wavelength

from Alyosha Efros



Holographic movie
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P(O,0, 4,V Vs V)
*is intensity of light

* Seen from ANY viewpoint
* OQOvertime

* As a function of wavelength

from Alyosha Efros



The Plenoptic Function
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Can reconstruct every possible view, at every
moment, from every position, at every wavelength
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Contains every photograph, every movie,

everything that anyone has ever seen! it completely

captures our visual reality! Not bad for a
function...

from Alyosha Efros



Sampling Plenoptic Function (top view)
N N
NN -

STZZ
TN



QuickTime VR

Panoramic image

Perspective Warp




QuickTime VR
T

GUICKTIME VR

M

Quicktime VR: An image-based approach to virtual environment
navigation. Shenchang Eric Chen. SIGGRAPH 1995



Ray

* Let’s not worry about time and color:

P (H: ¢: VX) VY) Vﬁ

* 5D
* 3D position
* 2D direction

Slide by Rick Szeliski and Michael Cohen



How can we use this?

Lighting

No Change in

Radiance

Surface Camera



Ray Reuse

* Infinite line
* Assume light is constant (vacuum)

* 4D
* 2D direction
* 2D position
* non-dispersive medium

Slide by Rick Szeliski and Michael Cohen



Only need plenoptic surface

Figure 1: The surtace of a cube holds all the radiance mformation
due to the enclosed object.



Synthesizing novel views
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Slide by Rick Szeliski and Michael Cohen



Lumigraph / Lighttield

* Qutside convex space

Empty

Stuff

\[}

* 4D

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization
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Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization

2D position
2D position —
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2 plane parameterization

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization

2D position ‘\
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2 plane parameterization

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization

Hold s.t constant
Let u,v vary
An image

Slide by Rick Szeliski and Michael Cohen



Lumigraph / Lighttield

from Marc Levoy and Pat Hanrahan



Capture Light Field

ldea 1

* Move camera carefully over s, t
plane

 Grantry
—see Lightfield paper “““““
[Marc Levoy and Pat Hanrahan]

S,t u,v

Slide by Rick Szeliski and Michael Cohen



Capture Light Field

ldea 2

* Move camera anywhere

* Interpolation over irregular samples
—see Lumigraph paper
[Gortler, Grzeszczuk, Szeliski,
Cohen]

S,t u,v

Slide by Rick Szeliski and Michael Cohen




Novel View Synthesis

For each output pixel e
determine s,t,u,v

‘use closest discrete RGB 48 -

einterpolate near values <\‘

S U

Slide by Rick Szeliski and Michael Cohen



Interpolation

* Nearest neighbor ==
* closest s

* closest u
° draw It

* Blend 16 nearest
* quadrilinear interpolation

Slide by Rick Szeliski and Michael Cohen



Stantford multi-camera array

* 640 x 480 pixels x
30 fps x 128 cameras

* synchronized timing
* continuous streaming

* flexible arrangement




Light field photography using
a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif,
Gene Duval, Mark Horowitz and Pat Hanrahan

Ren Ng




Light field photography using
a handheld plenoptic camera

Refocusing Novel View Synthesis

http://lightfield-forum.com/en/



Deep Learning for View Synthesis
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Generating Chairs with CNNs
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Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks

PAMI 2017 (CVPR 2015)



View Synthesis with Dense Correspondence
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View Synthesis by Appearance Flow
Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros
ECCV 2016



View Synthesis with Dense Correspondence

View Synthesis by Appearance Flow
Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros
ECCV 2016



Lots of recent progress using
deep learning for view synthesis!

Wiles CVPR 2020 Choi ICCV 2019 Flynn CVPR 2019

The following slides deck is from
Ben Mildenhall*, Pratul Srinivasan®, Matthew Tancik*, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng
30



The problem of novel view interpolation

Inputs: sparsely sampled images of scene Outputs: new views of same scene

37



Very successful approach: predict 3D voxel RGB-alpha grid

Input images Predicted voxel grid Rendered new views

Neural Volumes, Lombardi et al. 2019

38



RGB-alpha volume rendering for view synthesis

Soft 3D Multiplane image methods Neural Volumes

(Penner & Zhang 2017) Stereo Magnification (Zhou et al. 2018) (Lombardi et al. 2019)

Culmination of non-deep stereo | Pushing the Boundaries... (Srinivasan et al. 2019) | Direct gradient descent to

matching techniques _ocal L.ight Field Fusion (Mildenhall et al. 2019) optimize an RGBA volume,
DeepView (Flynn et al. 2019) regularized by 2 3D CNN

Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images
go into a 3D CNN, big RGBA 3D volume
comes out

39



RGB-alpha volume rendering for view synthesis

Soft 3D Multiplane image methods Neural Volumes

(Penner & Zhang 2017) Stereo Magnification (Zhou et al. 2018) (Lombardi et al. 2019)

Culmination of non-deep stereo | Pushing the Boundaries... (Srinivasan et al. 2019) | Direct gradient descent to

matching techniques _ocal L.ight Field Fusion (Mildenhall et al. 2019) optimize an RGBA volume,
DeepView (Flynn et al. 2019) regularized by 2 3D CNN

Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images
go into a 3D CNN, big RGBA 3D volume
comes out

L.* : \' Promote to MPI

Input Sampled View

40



RGB-alpha volume rendering for view synthesis

Soft 3D Multiplane image methods Neural Volumes

(Penner & Zhang 2017) Stereo Magnification (Zhou et al. 2018) (Lombardi et al. 2019)

Culmination of non-deep stereo | Pushing the Boundaries... (Srinivasan et al. 2019) | Direct gradient descent to

matching techniques _ocal Light Field Fusion (Mildenhall et al. 2019) optimize an RGBA volume,
DeepView (Flynn et al. 2019)

Single-View... (Tucker & Snavely 2020) regularized by a 3D CNN

Typical deep learning pipelines - images
go into a 3D CNN, big RGBA 3D volume
comes out

Example Reconstructions
Or a collection of videos from multiple viewpoints

41



RGB-alpha volume rendering for view synthesis

Input images Predicted voxel grid Rendered new views

Neural Volumes, Lombardi et al. 2019

42



RGB-alpha volume rendering for view synthesis

Soft 3D Multiplane image methods Neural Volumes

(Penner & Zhang 2017) Stereo Magnification (Zhou et al. 2018) (Lombardi et al. 2019)

Culmination of non-deep stereo ~ Pushing the Boundaries... (Srinivasan et al. 2019)  Direct gradient descent to

matching techniques _ocal Ltht Field Fusion (Mildenhall et al. 2019) optimize an RGBA volume,
DeepView (Flynn et al. 2019) regularized by 2 3D CNN

Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images
go into a 3D CNN, big RGBA 3D volume
comes out

+ Great rendering model: good for optimization
- Horrible storage requirements (1-10 GB)

43



Neural networks as a continuous shape representation

Occupancy Networks, Mescheder et al. CVPR 2019

44



Neural networks as a continuous shape representation

Occupancy Networks
(Mescheder et al. 2019)
(x,v,z) = occupancy

DeepSDF
(Park et al. 2019)

(x,y,z) — distance

Scene Representation Networks Differentiable Volumetric Rendering

(Sitzmann et al. 2019) (Niemeyer et al. 2020)
(x,v,z) = latent vec. (color, dist.) (x,v,z) = color, occ.

Implicit Model fy

45



Neural networks as a shape representation

DeepSDF Occupancy Networks
(Park et al. 2019) (Mescheder et al. 2019)
(x,v,z) — distance (x,v,z) = occupancy

- Limited rendering model: difficult to optimize
+ Highly compressible (1-10 MB)

Scene Representation Networks Differentiable Volumetric Rendering
(Sitzmann et al. 2019) (Niemeyer et al. 2020)
(x,v,z) = latent vec. (color, dist.) (x,v,z) — color, occ.

46



NeRF (neural radiance fields):

Neural networks as a volume representation,
using volume rendering to do view

synthesis.(x,y,z,0,®) = color, opacity

47



NeRF achieves state-of-the-art results on an extremely difficult problem

LLFF [Mildenhall 2019]
L J




NeRF achieves state-of-the-art results on an extremely difficult problem

Neural Volumes [Lombardi 2019] NeRF




NeRF achieves state-of-the-art results on an extremely difficult problem

SRN [Sitzmann 2019] NeRF

* Nearest Input




Key points

Continuous neural network as a volumetric scene representation (5D = xyz + direction)
Use volume rendering model to synthesize new views
Optimize using rendering loss for one scene (no prior training)

One extra trick for passing coordinates into network to get high frequency details

51



Key points

> Continuous neural network as a volumetric scene representation (5D = xyz + direction)

52



Representing a scene as a continuous 5D function

RN e | | B

Spatlal Viewing Output Output
location direction color density

.Q

Fully-connecteo
neural network

9 layers,
256 channels

53



Neural network replaces large N-d array

Versus

(x) )7; Z, 9} ¢)_>III_>(T') .g) b) O-)
Faq



Key points

> Use volume rendering model to synthesize new views

55



Generate views with traditional volume rendering

[“:"] N Har

56



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:
Ray

3D volume
1

‘ Camera

57



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N Ray
C = E 1;05c
i—1 \ AN by
colors
weights
3D volume

1

‘ Camera

58



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N
Cr~ ) Tiac
; ac\

colors

Ray

weights

How much light is blocked earlier along ray: 3D volume

1—1
T =10 —ay)
j=1

‘ Camera

59



Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N
Cr~ ) Tiac
; ozc\

colors

Ray

weights

How much light is blocked earlier along ray: 3D volume

1—1
T =10 —ay)
j=1

‘ Camera

How much light is contributed by ray segment i:

o; =1 — e 7i%

60



Sigma parametrization for continuous opacity

Rendering model for ray r(t) = o + td:

N
Cr~ ) Tiac
; ac\

colors

Ray

weights

3D volume

How much ||ght s blocked earlier along ray:

How ch Iit is contributed by ray segment i:

Fay = =1 - e_‘”‘st

1

‘ Camera

o1



Etfective resolution is tied to distance between samples

Rendering model for ray r(t) = o + td:

N
Cr~ ) Tiac
; ac\

colors

weights

How much light is blocked earlier along ray:

1—1
T =10 —ay)
j=1

‘ Camera

How much light is contributed by ray segment i:

o; =1 — e 7i%

62



Can we allocate samples more efficiently? Two pass rendering

Ray

3D volume

‘ Camera

63



Two pass rendering: coarse

Ray

treat weights as probability 3D volume

distribution for new samples

‘ Camera

64



Two pass rendering: fine

Ray

treat weights as probability 3D volume

distribution for new samples

‘ Camera

65



Viewing directions as input

Ray

(x,v,2,0,¢) as input  E="—

‘ Camera

3D volume

66



Viewing directions as input

Ray

Manipulate (0, ¢) to visualize
view-dependent effects

‘ Camera

3D volume

67



Viewing directions as input

(c) Radiance Distributions

63



Key points

> Optimize using rendering loss for one scene (no prior training)

69



Volume rendering is trivially ditferentiable
Renderlng model for ray r( ) = 0 + td:

C N ZTO"L ‘. idifferentiable w.r.t.

colors

weights

How much ||ght s blocked earlier along ray:

How much light is contributed by ray segment i:

—0,;0t;

‘ Camera

ozz-:l—e

70



Optimize with gradient descent on rendering loss

K‘_* ["][I j fay 1

Ray 2

mmz | render™ (Fq) — I (l) [

/1



Training network to reproduce all input views of the scene

(2



Naive implementation produces blurry results

NeRF (Naive)

73



Naive implementation produces blurry results

NeRF (Naive) NeRF (with positional encoding)

4



Key points

> One extra trick for passing coordinates into network to get high frequency details

lgs)



Challenge:

How to get MLPs to represent higher frequency functions?

/0



Simpler toy problem: memorizing a 2D image

(x,7) —»III—» (r, 9,b)



Simple trick enables network to memorize images

Ground truth image Standard fully-connected net

/8



Positional encoding: high frequency embedding of input coordinates

—E - ©
sin(X), cos(x)

sin(2x), cos(2x)
sin(4x), cos(4x) — m— (C)
sin(2"Vx), ;.?OS(ZNX)

79



Simple trick enables network to memorize images

Ground truth image Standard fully-connected net With “embedding”

80



Positional encoding also directly improves our scene representation!

r~ -
'&‘\" .

\ o an

LYo

2 2w ’ -

NeRF (Naive) NeRF (with positional encoding)
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Results




83



NeRF encodes convincing view-dependent effects using
directional dependence

— ;g\ o=

; I

——
—

—
.
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NeRF encodes convincing view-dependent effects using
directional dependence

85



NeRF encodes detailed scene geometry with occlusion effects




NeRF encodes detailed scene geometry with occlusion eftects




NeRF encodes detailed scene geometry with occlusion eftects

83



NeRF encodes detailed scene geometry

89



Thank You!

Aliased

16-726, Spring 2022
https://learning-image-synthesis.github.io/sp22

90 Video © Mip-NeRF [Barron et al., 2021]


https://learning-image-synthesis.github.io/sp22

