

3D-aware Synthesis Jun-Yan Zhu 16-726, Spring 2022

Many slides from Alyosha Efros, Rick Szeliski, Michael Cohen Paul Srinivasan, Ben Midlenhall, Jon Barron, Ren Ng

© NeRF [Mildenhall*, Srinivasan* et al., 2020]

Virtual Game night: Friday 9 pm (April 15), zoom

HW3 voting: by the end of 12th April (Tue)

HW5 comments:

- We have provided several user scribbles •
- From_mean does not work for vanilla GANs •

Logistics

3D world

Point of observation

What do we see?

2D image

Figures © Stephen E. Palmer, 2002

3D world

What do we see?

2D image

The Plenoptic Function

- •Q: What is the set of all things that we can ever see?
- •A: The Plenoptic Function (Adelson & Bergen)

•Let's start with a stationary person and try to parameterize everything that she or he can see...

Figure by Leonard McMillan

Grayscale snapshot

•is intensity of light

- Seen from a single view point
- At a single time
- Averaged over the wavelengths of the visible spectrum

•(can also do P(x,y), but spherical coordinate are nicer)

 $P(\theta,\phi)$

• is intensity of light

- Seen from a single view point \bullet
- At a single time \bullet
- As a function of wavelength ullet

Color snapshot

 $P(\theta,\phi,\lambda)$

• is intensity of light

- Seen from a single view point •
- Over time
- As a function of wavelength

A movie

 $P(\theta,\phi,\lambda,t)$

Holographic movie

• is intensity of light

- Seen from ANY viewpoint \bullet
- Over time
- As a function of wavelength •

 $P(\theta, \phi, \lambda, t, V_X, V_Y, V_Z)$

The Plenoptic Function

- Contains every photograph, every movie, captures our visual reality! Not bad for a function...

 $P(\theta, \phi, \lambda, t, V_X, V_Y, V_Z)$

 Can reconstruct every possible view, at every moment, from every position, at every wavelength

everything that anyone has ever seen! it completely

Just lookup -- Quicktime VR

QuickTime VR

Panoramic image

Perspective Warp

QuickTime VR

Quicktime VR: An image-based approach to virtual environment navigation. Shenchang Eric Chen. SIGGRAPH 1995

Let's not worry about time and color:

- 3D position
- 2D direction

$P(\theta,\phi,V_X,V_Y,V_Z)$

How can we use this?

Camera

- Infinite line
- Assume light is constant (vacuum)

- 4D
 - 2D direction
 - 2D position
 - non-dispersive medium

Only need plenoptic surface

Figure 1: The surface of a cudue to the enclosed object.

Figure 1: The surface of a cube holds all the radiance information

Synthesizing novel views

Lumigraph / Lightfield

Outside convex space

• 4D

- 2D position
- 2D direction

Lumigraph - Organization

2D position 2D position

2 plane parameterization

Lumigraph - Organization

2D position 2D position

2 plane parameterization

Lumigraph - Organization

Hold s,t constant Let u,v vary An image

Lumigraph - Organization

Lumigraph / Lightfield

from Marc Levoy and Pat Hanrahan

Capture Light Field

ldea 1

- Move camera carefully over s, t plane
- Grantry

-see Lightfield paper

[Marc Levoy and Pat Hanrahan]

Capture Light Field

Idea 2

- Move camera anywhere
- Interpolation over irregular samples -see Lumigraph paper [Gortler, Grzeszczuk, Szeliski, Cohen]

Novel View Synthesis

For each output pixel•determine s,t,u,v•use closest discrete RGB

OR•interpolate near values

Interpolation

- Nearest neighbor
 - closest s
 - closest u
 - draw it

- Blend 16 nearest
 - quadrilinear interpolation

Stanford multi-camera array

- 640 × 480 pixels ×
 30 fps × 128 cameras
- synchronized timing
- continuous streaming
- flexible arrangement

Light field photography using a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan

Ren Ng

Light field photography using a handheld plenoptic camera

Refocusing

http://lightfield-forum.com/en/

Novel View Synthesis

Deep Learning for View Synthesis

Generating Chairs with CNNs

Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)

View Synthesis with Dense Correspondence

View Synthesis by Appearance Flow Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros ECCV 2016

View Synthesis with Dense Correspondence

Tatarchenko et al. [1] Ours

View Synthesis by Appearance Flow Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros ECCV 2016

Tatarchenko et al. [1] Ours

Lots of recent progress using deep learning for view synthesis!

Wiles CVPR 2020

<image>

Choi ICCV 2019

The following slides deck is from Ben Mildenhall*, Pratul Srinivasan*, Matthew Tancik*, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng 36

Flynn CVPR 2019
The problem of novel view interpolation

Inputs: sparsely sampled images of scene

Outputs: new views of same scene

Very successful approach: predict 3D voxel RGB-alpha grid

Input images

Predicted voxel grid

Rendered new views

Neural Volumes, Lombardi et al. 2019

Soft 3D (Penner & Zhang 2017) Culmination of non-deep stereo matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018) Pushing the Boundaries... (Srinivasan et al. 2019) Local Light Field Fusion (Mildenhall et al. 2019) DeepView (Flynn et al. 2019) Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

Neural Volumes

Soft 3D (Penner & Zhang 2017) Culmination of non-deep stereo matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018) Pushing the Boundaries... (Srinivasan et al. 2019) Local Light Field Fusion (Mildenhall et al. 2019) DeepView (Flynn et al. 2019) Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

Neural Volumes

Soft 3D (Penner & Zhang 2017) Culmination of non-deep stereo matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018) Pushing the Boundaries... (Srinivasan et al. 2019) Local Light Field Fusion (Mildenhall et al. 2019) DeepView (Flynn et al. 2019) Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

Neural Volumes

Input images

Predicted voxel grid

Rendered new views

Neural Volumes, Lombardi et al. 2019

Soft 3D (Penner & Zhang 2017) Culmination of non-deep stereo matching techniques

Multiplane image methods

Stereo Magnification (Zhou et al. 2018) Pushing the Boundaries... (Srinivasan et al. 2019) Local Light Field Fusion (Mildenhall et al. 2019) DeepView (Flynn et al. 2019) Single-View... (Tucker & Snavely 2020)

Typical deep learning pipelines - images go into a 3D CNN, big RGBA 3D volume comes out

+ Great rendering model: good for optimization - Horrible storage requirements (1-10 GB)

Neural Volumes

Neural networks as a continuous shape representation

Occupancy Networks, Mescheder et al. CVPR 2019

Neural networks as a continuous shape representation

Occupancy Networks (Mescheder et al. 2019) $(x, y, z) \rightarrow occupancy$

Scene Representation Networks

(Sitzmann et al. 2019) $(x, y, z) \rightarrow latent vec. (color, dist.)$

DeepSDF (Park et al. 2019) $(x, y, z) \rightarrow distance$

Differentiable Volumetric Rendering

(Niemeyer et al. 2020) $(x, y, z) \rightarrow color, occ.$

Neural networks as a shape representation

DeepSDF (Park et al. 2019) $(x, y, z) \rightarrow distance$

Limited rendering model: difficult to optimize + Highly compressible (1-10 MB)

Scene Representation Networks (Sitzmann et al. 2019) $(x, y, z) \rightarrow latent vec. (color, dist.)$

Occupancy Networks (Mescheder et al. 2019) $(x, y, z) \rightarrow occupancy$

Differentiable Volumetric Rendering (Niemeyer et al. 2020) $(x, y, z) \rightarrow color, occ.$

NeRF (neural radiance fields): Neural networks as a volume representation, using volume rendering to do view synthesis. $(x, y, z, \theta, \phi) \rightarrow color, opacity$

NeRF achieves state-of-the-art results on an extremely difficult problem

NeRF achieves state-of-the-art results on an extremely difficult problem

Neural Volumes [Lombardi 2019]

NeRF

NeRF achieves state-of-the-art results on an extremely difficult problem

SRN [Sitzmann 2019]

NeRF

Key points

- Continuous neural network as a volumetric scene representation (5D = xyz + direction)
- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)
- One extra trick for passing coordinates into network to get high frequency details

Key points

- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)

Continuous neural network as a volumetric scene representation (5D = xyz + direction)

One extra trick for passing coordinates into network to get high frequency details

Representing a scene as a continuous 5D function

 (x, y, z, θ, ϕ)

Spatial location

Viewing direction

Output color Output density

Fully-connected neural network 9 layers, 256 channels

Neural network replaces large N-d array

versus

Key points

- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)

Continuous neural network as a volumetric scene representation (5D = xyz + direction)

One extra trick for passing coordinates into network to get high frequency details

Rendering model for ray r(t) = o + td:

Rendering model for ray r(t) = o + td:

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray: $T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray: $T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Sigma parametrization for continuous opacity

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray: $T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$

How much light is contributed by ray segment i: $\alpha_i = 1 - e^{-\sigma_i \delta t_i}$

Effective resolution is tied to distance between samples

Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray: $T_i = \prod_{j=1}^{i-1} (1-\alpha_j)$

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Can we allocate samples more efficiently? Two pass rendering

Two pass rendering: coarse

treat weights as probability distribution for new samples

Two pass rendering: fine

treat weights as probability distribution for new samples

Viewing directions as input

(x, y, z, θ, ϕ) as input

Viewing directions as input

Manipulate (θ, ϕ) to visualize view-dependent effects

Viewing directions as input

Key points

- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)

Continuous neural network as a volumetric scene representation (5D = xyz + direction)

One extra trick for passing coordinates into network to get high frequency details

Volume rendering is trivially differentiable

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Optimize with gradient descent on rendering loss

 $\min_{\Omega} \sum_{i} \| \operatorname{render}^{(i)}(F_{\Omega}) - I_{gt}^{(i)} \|$ **II**²

Training network to reproduce all input views of the scene

Naive implementation produces blurry results

Naive implementation produces blurry results

NeRF (Naive)

NeRF (with positional encoding)

Key points

- Use volume rendering model to synthesize new views
- Optimize using rendering loss for one scene (no prior training)

Continuous neural network as a volumetric scene representation (5D = xyz + direction)

One extra trick for passing coordinates into network to get high frequency details

Challenge: How to get MLPs to represent higher frequency functions?

Simpler toy problem: memorizing a 2D image

$(x, y) \longrightarrow (r, g, b)$

Simple trick enables network to memorize images

Ground truth image

Standard fully-connected net

Positional encoding: high frequency embedding of input coordinates

$sin(\mathbf{x}), cos(\mathbf{x})$ $sin(2\mathbf{x}), cos(2\mathbf{x})$ $sin(4\mathbf{x}), cos(4\mathbf{x})$ \vdots $sin(2^N\mathbf{x}), cos(2^N\mathbf{x})$

Simple trick enables network to memorize images

Ground truth image

Standard fully-connected net

With "embedding"

Positional encoding also directly improves our scene representation!

NeRF (Naive)

NeRF (with positional encoding)

Results

NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes convincing view-dependent effects using directional dependence

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry with occlusion effects

NeRF encodes detailed scene geometry

Thank You!

1/16x 1/8x 1/4x 1/2x

16-726, Spring 2022 https://learning-image-synthesis.github.io/sp22

1x 2x 4x 8x 16x Overblurred Correctly prefiltered

Video © Mip-NeRF [Barron et al., 2021]

