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Logistics

Virtual Game night: Friday 9 pm (April 15), zoom

HW3 voting: by the end of 12th April (Tue)

HW5 comments: 
• We have provided several user scribbles 
• From_mean does not work for vanilla GANs



Point of observation

Figures © Stephen E. Palmer, 2002

What do we see?

3D world 2D image
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The Plenoptic Function

•Q: What is the set of all things that we can ever see?

•A: The Plenoptic Function (Adelson & Bergen)

•Let’s start with a stationary person and try to parameterize everything
that she or he can see…

Figure by Leonard McMillan

from Alyosha Efros



Grayscale snapshot

•is intensity of light 

• Seen from a single view point

• At a single time

• Averaged over the wavelengths of the visible spectrum

•(can also do P(x,y), but spherical coordinate are nicer)

P(q,f)

from Alyosha Efros



Color snapshot

•is intensity of light 

• Seen from a single view point

• At a single time

• As a function of wavelength

P(q,f,l)

from Alyosha Efros



A movie

•is intensity of light 

• Seen from a single view point

• Over time

• As a function of wavelength

P(q,f,l,t)

from Alyosha Efros



Holographic movie

•is intensity of light 

• Seen from ANY viewpoint

• Over time

• As a function of wavelength

P(q,f,l,t,VX,VY,VZ)

from Alyosha Efros



The Plenoptic Function

• Can reconstruct every possible view, at every 
moment, from every position, at every wavelength

• Contains every photograph, every movie, 
everything that anyone has ever seen! it completely 
captures our visual reality!   Not bad for a 
function…

P(q,f,l,t,VX,VY,VZ)

from Alyosha Efros



Sampling Plenoptic Function (top view)

Just lookup -- Quicktime VR



QuickTime VR

Panoramic image

Perspective Warp



QuickTime VR

Quicktime VR: An image-based approach to virtual environment 
navigation. Shenchang Eric Chen. SIGGRAPH 1995



Ray

• Let’s not worry about time and color:

• 5D

• 3D position

• 2D direction

P(q,f,VX,VY,VZ)

Slide by Rick Szeliski and Michael Cohen



Surface Camera

No Change in 

Radiance

Lighting

How can we use this?



Ray Reuse

• Infinite line
• Assume light is constant (vacuum)

• 4D
• 2D direction
• 2D position
• non-dispersive medium

Slide by Rick Szeliski and Michael Cohen



Only need plenoptic surface



Synthesizing novel views

Slide by Rick Szeliski and Michael Cohen



Lumigraph / Lightfield

• Outside convex space

• 4D

StuffEmpty

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization 

• 2D position

• 2D direction
s

q

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization 

2D position
2D position

2 plane parameterization

s
u

Slide by Rick Szeliski and Michael Cohen



Lumigraph - Organization 

us

t s,t
u,v

v

s,t

u,v

Slide by Rick Szeliski and Michael Cohen

2D position
2D position

2 plane parameterization



Lumigraph - Organization

Hold s,t constant
Let u,v vary
An image

s,t u,v
Slide by Rick Szeliski and Michael Cohen



Lumigraph / Lightfield
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t

from Marc Levoy and Pat Hanrahan



Capture Light Field 

s,t u,v
Slide by Rick Szeliski and Michael Cohen

Idea 1
•Move camera carefully over s, t 
plane

•Grantry
–see Lightfield paper
[Marc Levoy and Pat Hanrahan]



Capture Light Field 

Idea 2
•Move camera anywhere
• Interpolation over irregular samples

–see Lumigraph paper
[Gortler, Grzeszczuk, Szeliski, 
Cohen]

s,t u,v
Slide by Rick Szeliski and Michael Cohen



Novel View Synthesis

For each output pixel
•determine s,t,u,v
•use closest discrete RGB

OR
•interpolate near values

s u
Slide by Rick Szeliski and Michael Cohen



Interpolation

• Nearest neighbor
• closest s
• closest u
• draw it

• Blend 16 nearest
• quadrilinear interpolation

s u
Slide by Rick Szeliski and Michael Cohen



Stanford multi-camera array

• 640 × 480 pixels ×
30 fps × 128 cameras

• synchronized timing

• continuous streaming

• flexible arrangement



Light field photography using 
a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif,
Gene Duval, Mark Horowitz and Pat Hanrahan

Ren Ng



Light field photography using 
a handheld plenoptic camera

Refocusing Novel View Synthesis 

http://lightfield-forum.com/en/



Deep Learning for View Synthesis



Generating Chairs with CNNs

Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks
PAMI 2017 (CVPR 2015)



View Synthesis with Dense Correspondence

View Synthesis by Appearance Flow 
Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros

ECCV 2016



View Synthesis with Dense Correspondence

View Synthesis by Appearance Flow 
Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, Alexei A. Efros

ECCV 2016



Lots of recent progress using 
deep learning for view synthesis!

36

Wiles CVPR 2020 Choi ICCV 2019 Flynn CVPR 2019

The following slides deck is from 
Ben Mildenhall*, Pratul Srinivasan*, Matthew Tancik*, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng
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The problem of novel view interpolation

Inputs: sparsely sampled images of scene Outputs: new views of same scene



Very successful approach: predict 3D voxel RGB-alpha grid

38
Neural Volumes, Lombardi et al. 2019 

Input images Predicted voxel grid Rendered new views



RGB-alpha volume rendering for view synthesis

39

Soft 3D 
(Penner & Zhang 2017)
Culmination of non-deep stereo 
matching techniques

Neural Volumes 
(Lombardi et al. 2019)
Direct gradient descent to 
optimize an RGBA volume, 
regularized by a 3D CNN

Multiplane image methods
Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries… (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View… (Tucker & Snavely 2020)

Typical deep learning pipelines - images 
go into a 3D CNN, big RGBA 3D volume 
comes out



RGB-alpha volume rendering for view synthesis
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RGB-alpha volume rendering for view synthesis
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Soft 3D 
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matching techniques

Neural Volumes 
(Lombardi et al. 2019)
Direct gradient descent to 
optimize an RGBA volume, 
regularized by a 3D CNN

Multiplane image methods
Stereo Magnification (Zhou et al. 2018)
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RGB-alpha volume rendering for view synthesis

42
Neural Volumes, Lombardi et al. 2019 

Input images Predicted voxel grid Rendered new views



RGB-alpha volume rendering for view synthesis
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Soft 3D 
(Penner & Zhang 2017)
Culmination of non-deep stereo 
matching techniques

Neural Volumes 
(Lombardi et al. 2019)
Direct gradient descent to 
optimize an RGBA volume, 
regularized by a 3D CNN

Multiplane image methods
Stereo Magnification (Zhou et al. 2018)
Pushing the Boundaries… (Srinivasan et al. 2019)
Local Light Field Fusion (Mildenhall et al. 2019)
DeepView (Flynn et al. 2019)
Single-View… (Tucker & Snavely 2020)

Typical deep learning pipelines - images 
go into a 3D CNN, big RGBA 3D volume 
comes out

+ Great rendering model: good for optimization
- Horrible storage requirements (1-10 GB)



Neural networks as a continuous shape representation

44

Occupancy Networks, Mescheder et al. CVPR 2019



DeepSDF 
(Park et al. 2019)
(𝑥, 𝑦, 𝑧) → distance

Neural networks as a continuous shape representation
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Differentiable Volumetric Rendering 
(Niemeyer et al. 2020)
(𝑥, 𝑦, 𝑧) → color, occ.

Scene Representation Networks 
(Sitzmann et al. 2019)
(𝑥, 𝑦, 𝑧) → latent vec. (color, dist.)

Occupancy Networks 
(Mescheder et al. 2019)
(𝑥, 𝑦, 𝑧) → occupancy



Neural networks as a shape representation
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DeepSDF 
(Park et al. 2019)
(𝑥, 𝑦, 𝑧) → distance

Occupancy Networks 
(Mescheder et al. 2019)
(𝑥, 𝑦, 𝑧) → occupancy

Differentiable Volumetric Rendering 
(Niemeyer et al. 2020)
(𝑥, 𝑦, 𝑧) → color, occ.

Scene Representation Networks 
(Sitzmann et al. 2019)
(𝑥, 𝑦, 𝑧) → latent vec. (color, dist.)

- Limited rendering model: difficult to optimize
+ Highly compressible (1-10 MB)



NeRF (neural radiance fields):
Neural networks as a volume representation, 

using volume rendering to do view 
synthesis.(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) → color, opacity

47



NeRF achieves state-of-the-art results on an extremely difficult problem

48



NeRF achieves state-of-the-art results on an extremely difficult problem
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NeRF achieves state-of-the-art results on an extremely difficult problem
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Key points

‣ Continuous neural network as a volumetric scene representation (5D = xyz + direction)

‣ Use volume rendering model to synthesize new views

‣ Optimize using rendering loss for one scene (no prior training)

‣ One extra trick for passing coordinates into network to get high frequency details

51



Key points
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‣ Continuous neural network as a volumetric scene representation (5D = xyz + direction)



Representing a scene as a continuous 5D function
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(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!

{ {
Spatial 
location

Viewing 
direction

Fully-connected 
neural network

9 layers, 
256 channels

Output 
color

{

Output 
density

{

53



Neural network replaces large N-d array
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(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!
54

𝑥

𝑦

𝑧 (𝑟, 𝑔, 𝑏, 𝛼)

versus



Key points
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‣ Use volume rendering model to synthesize new views
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Generate views with traditional volume rendering

Ω



Generate views with traditional volume rendering
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Rendering model for ray r(t) = o + td:

3D volume

𝑡!

Camera

Ray



Generate views with traditional volume rendering
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Rendering model for ray r(t) = o + td:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights



Generate views with traditional volume rendering
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray: 3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights



Generate views with traditional volume rendering
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights



Sigma parametrization for continuous opacity
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

61



Effective resolution is tied to distance between samples
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

62

sample distance



Can we allocate samples more efficiently? Two pass rendering

63

3D volume

𝑡!

Camera

Ray

63



Two pass rendering: coarse

64

3D volume

𝑡!

Camera

Ray

64

treat weights as probability 
distribution for new samples



Two pass rendering: fine
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3D volume

𝑡!

Camera

Ray

65

treat weights as probability 
distribution for new samples
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3D volume

𝑡!

Camera

Ray

66

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) as input

Viewing directions as input



Viewing directions as input
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3D volume

𝑡!

Camera

Ray

67

Manipulate (𝜃, 𝜙) to visualize 
view-dependent effects



Viewing directions as input

68



Key points

69

‣ Optimize using rendering loss for one scene (no prior training)



Volume rendering is trivially differentiable
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Rendering model for ray r(t) = o + td:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

3D volume

𝑡!

𝑡!

Camera

Ray

colors

weights

70

differentiable w.r.t.
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Optimize with gradient descent on rendering loss

𝑚𝑖𝑛
!
∑
"
∥ render(")(𝐹!) − 𝐼%&

(") ∥'

Ω



Training network to reproduce all input views of the scene

72



Naive implementation produces blurry results
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NeRF (Naive)
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NeRF (Naive) NeRF (with positional encoding)

Naive implementation produces blurry results



Key points

75

‣ One extra trick for passing coordinates into network to get high frequency details



Challenge:
How to get MLPs to represent higher frequency functions?
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Simpler toy problem: memorizing a 2D image
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(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)
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Simple trick enables network to memorize images 

Ground truth image

78

Standard fully-connected net



Positional encoding: high frequency embedding of input coordinates
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(𝐱) (𝐜)

(𝐜)...

sin(𝐱), cos(𝐱)
sin(2𝐱), cos(2𝐱)
sin(4𝐱), cos(4𝐱)

sin(2!𝐱), cos(2!𝐱)
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Simple trick enables network to memorize images 

Standard fully-connected net With “embedding”Ground truth image
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Positional encoding also directly improves our scene representation!

81

NeRF (Naive) NeRF (with positional encoding)



Results

82
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NeRF encodes convincing view-dependent effects using 
directional dependence

84



NeRF encodes convincing view-dependent effects using 
directional dependence
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NeRF encodes detailed scene geometry with occlusion effects
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NeRF encodes detailed scene geometry with occlusion effects
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NeRF encodes detailed scene geometry with occlusion effects
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NeRF encodes detailed scene geometry
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Thank You!

16-726, Spring 2022
https://learning-image-synthesis.github.io/sp22

90 Video © Mip-NeRF [Barron et al., 2021]

https://learning-image-synthesis.github.io/sp22

