

Conditional GANs, Image-to-Image Translation Jun-Yan Zhu 16-726, Spring 2022

© https://affinelayer.com/pixsrv/, pix2pix [Isola et al., 2016]

Ideal models (Dream)

Pros: good sample, fast sample, Exact/fast likelihoods

good coverage, easy to training, learn low-dimensional latent representation. Autoregressive models

Pros: Exact likelihoods, good coverage

Cons: Slow to evaluate or sample

VAEs

Pros: fast to sample, fast to train, good coverage

Cons: Blurry samples (in practice)

GANs

Pros: fast to sample, fast to train, good samples

Cons: No likelihoods (density), bad coverage (mode collapse)

Flow-based models

Pros: fast to sample, exact likelihoods

Cons: memory-intensive; slow training; limited choices for generators, high-dimensional codes

Diffusion models

Pros: good samples, good coverage

Cons: slow training, slow sampling

Which model is better?

- It depends on your applications
 - Synthesis
 - Classification
 - Density estimation
- Which model is easier to train?
- Which model is faster (training & inference)?

Conditional GANs, Image-to-Image Translation Jun-Yan Zhu 16-726, Spring 2021

© https://affinelayer.com/pixsrv/, pix2pix [Isola et al., 2016]

Problem Statement

Problem Statement

Input

Output

<u>Goal</u>: synthesize a photograph given an input image

Early work (Example-based)

Semantic Photo Synthesis [Johnson et al., Eurographics 2006]

Sketch2Photo [Tao et al., SIGGRAPH Asia 2009]

Semantic Photo Synthesis

M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," **Eurographics 2006**

Semantic Photo Synthesis [EG'06]

M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," Eurographics 2006

Semantic Photo Synthesis

Semantic Photo Synthesis

M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," Computer Graphics Forum Journal (Eurographics 2006), vol. 25, no. 3, 2006.

Learning-based methods

Loss functions for Image Synthesis

Learnable rendering

Input X

- What is a good objective \mathcal{L} ?
- What is a good loss?
- How to calculate it efficiently?
- How to collect data (x, y)?

Output Image G(x)

Designing Loss Functions

Predicted output

GT output

L2 regression $\arg\min_{G} \mathbb{E}[||G(x) - y||]$

Designing Loss Functions

Image colorization

L2 regression

Super-resolution

L2 regression

Designing Loss Functions

Image colorization

Classification Loss: Cross entropy objective, with colorfulness term

[Zhang et al. 2016] Super-resolution

Feature/Perceptual loss Deep feature matching objective

[Gatys et al., 2016], [Johnson et al. 2016], [Dosovitskiy and Brox. 2016]

"Perceptual Loss"

Gatys et al. In CVPR, 2016. Johnson et al. In ECCV, 2016. Dosovitskiy and Brox. In NIPS, 2016.

Chen and Koltun. In ICCV, 2017.

CNNs as a Perceptual Metric

c.f. Gatys et al. CVPR 2016. Johnson et al. ECCV 2016. Dosovitskiy and Brox. NIPS 2016.

CNNs as a Perceptual Metric

F is a deep network (e.g., ImageNet classifier)

Learning with Perceptual Loss

CRN [Chen and Koltun, 2017]

Generated images

Universal loss?

- •
- •

Generated images

Real vs. Fake

[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]

Output image

Input image

A two-player game:

- G tries to generate fake images that can fool D.
- D tries to detect fake images. ullet

Real (1) or fake (0)?

Learning objective $\min_{G} \max_{D} \mathbb{E}_{x} \left[\log(1 - D(G(x))) \right] + \mathbb{E}_{y} \left[\log D(y) \right]$

Learnable Loss function

Learnable Loss function

Learning objective

 $\min \max \mathbb{E}_x[\log(1 - D(G(x))] + \mathbb{E}_y[\log D(y)]]$ G

Pix2pix [Isola et al., 2016]

Learning objective

 $\min \max \mathbb{E}_x[\log(1 - D(G(x))] + \mathbb{E}_y[\log D(y)]]$ G

Pix2pix [Isola et al., 2016]

Real or fake **pair** ?

Pix2pix [Isola et al., 2016]

pix2pix Generator (U-Net)

U-Net [Ronneberger et al.]: popular CNN backbone for biomedical image segmentation <u>U-Net</u>: preserve high-frequency information (e.g., edge) of the input image. Encoder-decoder: lose high-frequency details due to the information bottleneck

pix2pix Generator (U-Net)

Generator design is critical for image quality. cGAN (conditional GANs) loss: capture realism. L1 loss stabilizes training (faster convergence)

pix2pix Discriminator (PatchGAN)

- Rather than penalizing if output image looks fake, penalize if each overlapping *patches* looks fake • Focus on local visual cues (color,
- textures).
- <u>Global</u> structure: the input image has already encoded global structure. L1 loss can help as well.
- Advantages
- Faster, fewer parameters
- More supervised observations
- Applies to arbitrarily large images

https://affinelayer.com/pixsrv/

Input: Skayskale Outputp Photolor

Real or fake **pair** ?

Automatic Colorization with pix2pix

Data from [Russakovsky et al. 2015]
Automatic Colorization with pix2pix

Data from [Russakovsky et al. 2015]

Input: **Text** → Output: **Photo** Text-to-Image Synthesis

StackGAN, StackGAN++ [Zhang et al., 2016 and 2017], AttnGAN [Xu et al., 2018]

Real or fake **pair** ?

Input: **Class** → Output: **Photo Class-conditional GANs**

cGANs [Mirza and Osindero. 2014], SAGAN [Zhang et al., 2018], BigGAN [Brock et al., 2019]

Real or fake **pair** ?

StyleGAN-XL [Sauer et al., 2022]

Class-conditional Discriminator

Projection Discriminator [Miyato and Koyama, ICLR 2018]

Class-conditional Discriminator

Projection Discriminator [Miyato and Koyama, ICLR 2018]

BigGAN

(a) 128×128

(b) 256×256

(c) 512×512

Real or fake **pair** ?

Pix2pix [Isola et al., 2016]

Limitations

- One-to-one mapping.
- Low-resolution output.
- Requires paired training data

Improving Conditional GANs

- Multimodal synthesis.
- High-resolution synthesis.
- Model training without pairs (next lecture)

real

 D_{K+1}

Discriminator

Discriminator: K+1 classification

Multi-agent Diverse GANs [Ghosh et al., CVPR 2018]

Generator: fool D to classify fake as real

real OR from $G_1 G_2 \cdots G_K$

Synthesizing Multiple Results Night input Day output 1 Day output 2 Day output 3

Multi-agent Diverse GANs [Ghosh et al., CVPR 2018]

real

 D_{K+1}

Discriminator

Discriminator: K+1 classification

Multi-agent Diverse GANs [Ghosh et al., CVPR 2018]

Generator: fool D to classify fake as real

real OR from $G_1 G_2 \cdots G_K$

Synthesizing Multiple Results Night input Day output 1 Day output 2 Day output 3

Multi-agent Diverse GANs [Ghosh et al., CVPR 2018]

VAE-GAN [Larsen et al., 2016], BicycleGAN [Zhu et al., 2017]

BicycleGAN [Zhu et al., 2017]

BicycleGAN [Zhu et al., 2017]

Synthesizing Multiple Results $G(x, z_1)$ Χ

 \mathbf{T}

$$\max_{G} \mathcal{L}_{\boldsymbol{z}}(G) = \mathbb{E}_{\boldsymbol{z}_{1},\boldsymbol{z}_{2}} \left[\min \left(\frac{\|G(\boldsymbol{x},\boldsymbol{z}_{1}) - G(\boldsymbol{x},\boldsymbol{z}_{2})\|}{\|\boldsymbol{z}_{1} - \boldsymbol{z}_{2}\|}, \tau \right) \right],$$

DSGAN [Zhu et al., 2017]

Synthesizing Multiple Results $G(x, z_2)$ $G(x, z_1)$ Χ

 z_2

DSGAN [Yang et al., 2019]

$$\max_{G} \mathcal{L}_{\boldsymbol{z}}(G) = \mathbb{E}_{\boldsymbol{z}_{1},\boldsymbol{z}_{2}} \left[\min \left(\frac{\|G(\boldsymbol{x},\boldsymbol{z}_{1}) - G(\boldsymbol{x},\boldsymbol{z}_{2})\|}{\|\boldsymbol{z}_{1} - \boldsymbol{z}_{2}\|}, \tau \right) \right]$$

DSGAN [Yang et al., 2019]

Improving Conditional GANs

- Multimodal synthesis.
- High-resolution synthesis.
- Model training without pairs (next) lecture)

The Curse of Dimensionality

Pix2pix output

pix2pixHD [Wang et al., 2018]

pix2pixHD: 2048×1024

Conditional Image Synthesis in the Wild

pix2pixHD [Wang et al., 2018]

pix2pixHD [Wang et al., 2018]

grass

Problem with standard networks

SPADE (ours)

input

output

SPADE(SPAtially ADaptive DEnormalization)

SPADE(SPAtially ADaptive DEnormalization)

Batch Norm (loffe et al. 2015)

See other adaptive/conditional normalization: conditional BN (Dumoulin et al.), AdalN (Huang and Belongie), SFT (Wang et al.)

Generator

Semantic Control SPADE SPADE ResBlk SPADE ResBlk SPADE ResBlk ResBlk -2 X -4

Semantic Control

Semantic Control SPADE ResBlk SPADE ResBlk SPADE ResBlk SPADE ResBlk -2 X -4 _4

Style Manipulation

Style Manipulation

DU2019

By Darek Zabrocki, Concept Designer and Illustrator

· Green Bo

and the second second

Thank You!

16-726, Spring 2022

