

Data-Driven Graphics Jun-Yan Zhu 16-726 Learning-based Image Synthesis

With slides from Alexei. A. Efros, James Hays, Antonio Torralba, and Frederic Heger

© Zhu, Lee, Efros, SIGGRAPH 2014

Subject-specific Data

Photos of Coliseum

Portraits of Bill Clinton

Big Visual Data

100 hours uploaded per minute

3.5 trillion photographs

the simple image sharer 1 billion images served daily

facebook 70 billion images

Big issues

- What is out there on the Internet? How do we get it? What can we do with it?
- How do we compute distances between images?

Much of Captured World is "generic"

Generic Data

street scenes

Food plates

pedestrians

faces

The Internet as a Data Source

- Social Networking Sites (e.g., Facebook)
- Image Search Engines (e.g., Google, Bing)
- Photo Sharing Sites (e.g., Instagram, Flickr)
- Computer Vision Databases (e.g., ImageNet, Places, OpenImages)

Is Big Visual Data useful?

A motivating example...

Scene Matching for

The Algorithm

Scene Matching

Scene Descriptor

Scene Descriptor

Scene Descriptor

2 Million Flickr Images

Context Matching

Graph cut + Poisson blending

200

and the first state

Image Blending

Poisson Image Blending

sources/destinations

seamless cloning

More details in the later lectures.

More results

Why does it work?

the second se

Recap: Using lots of data!

Trick: If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

Semantic Photo Synthesis

M. Johnson, G. Brostow, J. Shotton, O. A. c, and R. Cipolla, "Semantic Photo Synthesis," Computer Graphics Forum Journal (Eurographics 2006), vol. 25, no. 3, 2006.

Semantic Photo Synthesis [EG'06]

Johnson, Brostow, Shotton, Arandjelovic, Kwatra, and Cipolla. Eurographics 2006.

Semantic Photo Synthesis

J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn, and A. Criminisi, "Photo Clip Art," ACM Transactions on Graphics (SIGGRAPH 2007), vol. 26, no. 3, Aug. 2007.

Photo Clip Art [SIGGRAPH 2007] Inserting a single object -- still very hard!

[Lalonde et al, SIGGRAPH 2007]

Photo Clip Art

Use database to find well-fitting object

Lalonde et al, SIGGRAPH 2007

Geometry is not enough

Illumination context

- Exact environment map is impossible 0
- Approximations [Khan et al., '06] Database image

Environment map rough approximation

Illumination context

Database image

Automatic Photo Popup Hoiem et al., SIGGRAPH '05

P(pixel|class)

CIE L*a*b* histograms

 $\bigcirc \bigcirc \bigcirc \bigcirc$

 $\mathbf{O} \mathbf{O} \mathbf{O}$

 $\mathbf{0}$

Illumination nearest-neighbors

Street accident

Painting

Alley

Failure cases

Failure cases

Review (Data-driven Graphics)

- How to find images given a user query?
 - Image Retrieval (Gist descriptor? Deep learning?)
 - Big data helps!
- How to combine images?
 - Image blending (Poisson Equation)

How to Combine Images?

- Image Blending/Compositing:
 - Each piece comes from a different image.
 - Need to hide the boundary

M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, "CG2Real: Improving the realism of computer generated images using a large collection of photographs," IEEE TVCG, 2010.

CG2Real

Cosegmentation

Local style transfer

M. K. Johnson, K. Dale, S. Avidan, H. Pfister, W. T. Freeman, and W. Matusik, "CG2Real: Improving the realism of computer generated images using a large collection of photographs," IEEE TVCG, 2010.

Similar images

Image Database

Sketch2Photo

Sketch2Photo

Sketch-based image retrieval + image blending

User Input

Database images

Sketch2Photo: Internet Image Montage. Tao et al. SIGGRAPH Asia 2009.

Shape retrieval [Belongie et al. PAMI 2002]

Only based on the extracted contour

Output 09.

How to Combine Images?

- Image Blending/Compositing:
 - Each piece comes from a different image.
 - Need to hide the boundary
- Image Averaging
 - Each pixel is a combination of multiple pixels from different images.
 - Special case: Cross-Dissolve (two images)

Image Averaging

Multiple Individuals

Sir Francis Galton 1822-1911

[Galton, "Composite Portraits", Nature, 1878]

Composite

Average Images in Art

"60 passagers de 2e classe du metro, entre 9h et 11h" (1985) Krzysztof Pruszkowski "Dynamism of a cyclist" (2001) James Campbell

"Spherical type gasholders" (2004) Idris Khan

"100 Special Moments" (2004) by Jason Salavon

Newlyweds

Little Leaguer

Kids with Santa

Not so simple...

Jason Salavon "Kids with Santa"

Google query result: "kids with Santa"

Automatic Average

Why Difficult?

Visual Modes

Misaligned

"Object-Centric Averages" (2001) by Antonio Torralba

Manual Annotation and Alignment

With Alignment

Misaligned Aligned

Zhu, Lee, Efros. AverageExplorer: Interactive Exploration and Alignment of Visual Data Collections, SIGGARPH 2014.

Different Cat Breeds (Simple Average)

Abyssinian Sphynx Birman

Bombay

Egyptian Mau

British Persian Maine Russian Siamese Shorthair Blue Coon

Ragdoll

Bengal

Data from [Parkhi et al. 2012]

Different Cat Breeds (Our Result)

Abyssinian

Sphynx

Birman

Bombay

Egyptian Mau

British Shorthair

Persian

Maine Coon

Russian Siamese Blue

Ragdoll

Bengal

Data from [Parkhi et al. 2012]

Application: Online shopping

AverageExplorer

ShadowDraw

Limitations

- Realism
 - Blending: locally realistic; globally not (need to handle) and hide artifacts)
 - Averaging: globally realistic; locally not (results are blurry)
- Speed
 - Slow; might take minutes to hours for a user input.
 - Requires large-scale external databases.